The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 X 1 1 1 X 1 X X 0 1 3 1 0 X 0 0 2X X+3 X 2X+3 2X 6 3 X+3 X+3 2X+3 2X 3 X+6 2X+3 X X+3 X 2X 6 2X+6 0 X+3 2X+3 X X 3 3 6 2X 3 2X+6 2X 2X+6 X X+3 2X+3 2X+6 X+3 X+3 2X+3 0 0 3 0 2X+3 X X X+6 3 3 0 2X 2X+6 6 3 X+3 2X+6 X+3 X X 2X+6 X 2X+6 0 0 X 2X 6 2X+3 X X+3 2X+6 2X+3 0 2X+3 6 2X 6 X X X+6 2X 0 X+6 2X 2X+3 X+6 X+6 0 3 2X+3 X 0 2X+3 6 X+6 X 3 X+6 2X+6 X+6 2X 6 2X 3 2X+6 X 2X 2X+6 3 6 0 6 2X+3 X+3 2X+3 X+6 X 2X+6 2X+6 X+6 3 3 X+3 3 X+6 0 6 X+6 2X+6 0 0 0 6 0 0 0 0 0 0 3 6 3 6 3 3 6 3 3 6 3 3 3 6 6 3 6 3 3 6 6 0 3 6 3 6 3 0 6 6 3 6 0 0 0 3 3 6 0 0 0 6 0 0 3 0 0 0 6 3 3 6 0 0 6 3 6 generates a code of length 67 over Z9[X]/(X^2+3,3X) who´s minimum homogenous weight is 127. Homogenous weight enumerator: w(x)=1x^0+198x^127+342x^128+112x^129+396x^130+516x^131+518x^132+810x^133+810x^134+906x^135+786x^136+552x^137+138x^138+90x^139+84x^140+22x^141+54x^142+36x^143+36x^145+78x^146+2x^147+36x^148+12x^149+18x^151+6x^154+2x^180 The gray image is a code over GF(3) with n=603, k=8 and d=381. This code was found by Heurico 1.16 in 3.25 seconds.